Motives and Algebraic De Rham Cohomology
نویسنده
چکیده
In this paper, we define a certain Hodge-theoretic structure for an arbitrary variety X over the complex number field by using the theory of mixed Hodge module due to Morihiko Saito. We call it an arithmetic Hodge structure of X. It is shown that extension groups of arithmetic Hodge structure do not vanish even for degree ≥ 2. Moreover, we define higher Abel-Jacobi maps from Bloch’s higher Chow groups of X to these extension groups. These maps essentially involve the classical Abel-Jacobi maps by Weil and Griffiths, and Mumford’s infinitesimal invariants of 0-cycles on surfaces.
منابع مشابه
Local Acyclic Fibrations and the De Rham Complex
We reinterpret algebraic de Rham cohomology for a possibly singular complex variety X as sheaf cohomology in the site of smooth schemes over X with Voevodsky’s h-topology. Our results extend to the algebraic de Rham complex as well. Our main technique is to extend Čech cohomology of hypercovers to arbitrary local acyclic fibrations of simplicial presheaves.
متن کاملTropical Cycle Classes for Non-archimedean Spaces and Weight Decomposition of De Rham Cohomology Sheaves
This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedea...
متن کاملAlgebraic de Rham cohomology
Before we continue, we need to point out some properties of algebraic de Rham cohomology. In other words, we will first prove some of the axioms before introducing the trace map and cohomology classes. Note that the axioms of a Weil cohomology theory do not provide for the existence of cohomology groups defined for nonprojective varieties, but that we may use the fact that they are defined for ...
متن کاملArithmetic Hodge Structure and Higher Abel-jacobi Maps
In this paper, we show some applications to algebraic cycles by using higher Abel-Jacobi maps which were defined in [the author: Motives and algebraic de Rham cohomology]. In particular, we prove that the Beilinson conjecture on algebraic cycles over number fields implies the Bloch conjecture on zero-cycles on surfaces. Moreover, we construct a zero-cycle on a product of curves whose Mumford in...
متن کاملJacobians of Noncommutative Motives
In this article one extends the classical theory of (intermediate) Jacobians to the “noncommutative world”. Concretely, one constructs a Q-linear additive Jacobian functor N 7→ J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd ...
متن کاملDwork cohomology, de Rham cohomology, and hypergeometric functions
In the 1960’s, Dwork developed a p-adic cohomology theory of de Rham type for varieties over finite fields, based on a trace formula for the action of a Frobenius operator on certain spaces of p-analytic functions. One can consider a purely algebraic analogue of Dwork’s theory for varieties over a field of characteristic zero and ask what is the connection between this theory and ordinary de Rh...
متن کامل